Ticket #31158: loader.h

File loader.h, 62.0 KB (added by girl@…, 12 years ago)
Line 
1/*
2 * Copyright (c) 1999-2010 Apple Inc.  All Rights Reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23#ifndef _MACHO_LOADER_H_
24#define _MACHO_LOADER_H_
25
26/*
27 * This file describes the format of mach object files.
28 */
29#include <stdint.h>
30
31/*
32 * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types
33 * and contains the constants for the possible values of these types.
34 */
35#include <mach/machine.h>
36
37/*
38 * <mach/vm_prot.h> is needed here for the vm_prot_t type and contains the
39 * constants that are or'ed together for the possible values of this type.
40 */
41#include <mach/vm_prot.h>
42
43/*
44 * <machine/thread_status.h> is expected to define the flavors of the thread
45 * states and the structures of those flavors for each machine.
46 */
47#include <mach/machine/thread_status.h>
48#include <architecture/byte_order.h>
49
50/*
51 * The 32-bit mach header appears at the very beginning of the object file for
52 * 32-bit architectures.
53 */
54struct mach_header {
55        uint32_t        magic;          /* mach magic number identifier */
56        cpu_type_t      cputype;        /* cpu specifier */
57        cpu_subtype_t   cpusubtype;     /* machine specifier */
58        uint32_t        filetype;       /* type of file */
59        uint32_t        ncmds;          /* number of load commands */
60        uint32_t        sizeofcmds;     /* the size of all the load commands */
61        uint32_t        flags;          /* flags */
62};
63
64/* Constant for the magic field of the mach_header (32-bit architectures) */
65#define MH_MAGIC        0xfeedface      /* the mach magic number */
66#define MH_CIGAM        0xcefaedfe      /* NXSwapInt(MH_MAGIC) */
67
68/*
69 * The 64-bit mach header appears at the very beginning of object files for
70 * 64-bit architectures.
71 */
72struct mach_header_64 {
73        uint32_t        magic;          /* mach magic number identifier */
74        cpu_type_t      cputype;        /* cpu specifier */
75        cpu_subtype_t   cpusubtype;     /* machine specifier */
76        uint32_t        filetype;       /* type of file */
77        uint32_t        ncmds;          /* number of load commands */
78        uint32_t        sizeofcmds;     /* the size of all the load commands */
79        uint32_t        flags;          /* flags */
80        uint32_t        reserved;       /* reserved */
81};
82
83/* Constant for the magic field of the mach_header_64 (64-bit architectures) */
84#define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
85#define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
86
87/*
88 * The layout of the file depends on the filetype.  For all but the MH_OBJECT
89 * file type the segments are padded out and aligned on a segment alignment
90 * boundary for efficient demand pageing.  The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
91 * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
92 * of their first segment.
93 *
94 * The file type MH_OBJECT is a compact format intended as output of the
95 * assembler and input (and possibly output) of the link editor (the .o
96 * format).  All sections are in one unnamed segment with no segment padding.
97 * This format is used as an executable format when the file is so small the
98 * segment padding greatly increases its size.
99 *
100 * The file type MH_PRELOAD is an executable format intended for things that
101 * are not executed under the kernel (proms, stand alones, kernels, etc).  The
102 * format can be executed under the kernel but may demand paged it and not
103 * preload it before execution.
104 *
105 * A core file is in MH_CORE format and can be any in an arbritray legal
106 * Mach-O file.
107 *
108 * Constants for the filetype field of the mach_header
109 */
110#define MH_OBJECT       0x1             /* relocatable object file */
111#define MH_EXECUTE      0x2             /* demand paged executable file */
112#define MH_FVMLIB       0x3             /* fixed VM shared library file */
113#define MH_CORE         0x4             /* core file */
114#define MH_PRELOAD      0x5             /* preloaded executable file */
115#define MH_DYLIB        0x6             /* dynamically bound shared library */
116#define MH_DYLINKER     0x7             /* dynamic link editor */
117#define MH_BUNDLE       0x8             /* dynamically bound bundle file */
118#define MH_DYLIB_STUB   0x9             /* shared library stub for static */
119                                        /*  linking only, no section contents */
120#define MH_DSYM         0xa             /* companion file with only debug */
121                                        /*  sections */
122#define MH_KEXT_BUNDLE  0xb             /* x86_64 kexts */
123
124/* Constants for the flags field of the mach_header */
125#define MH_NOUNDEFS     0x1             /* the object file has no undefined
126                                           references */
127#define MH_INCRLINK     0x2             /* the object file is the output of an
128                                           incremental link against a base file
129                                           and can't be link edited again */
130#define MH_DYLDLINK     0x4             /* the object file is input for the
131                                           dynamic linker and can't be staticly
132                                           link edited again */
133#define MH_BINDATLOAD   0x8             /* the object file's undefined
134                                           references are bound by the dynamic
135                                           linker when loaded. */
136#define MH_PREBOUND     0x10            /* the file has its dynamic undefined
137                                           references prebound. */
138#define MH_SPLIT_SEGS   0x20            /* the file has its read-only and
139                                           read-write segments split */
140#define MH_LAZY_INIT    0x40            /* the shared library init routine is
141                                           to be run lazily via catching memory
142                                           faults to its writeable segments
143                                           (obsolete) */
144#define MH_TWOLEVEL     0x80            /* the image is using two-level name
145                                           space bindings */
146#define MH_FORCE_FLAT   0x100           /* the executable is forcing all images
147                                           to use flat name space bindings */
148#define MH_NOMULTIDEFS  0x200           /* this umbrella guarantees no multiple
149                                           defintions of symbols in its
150                                           sub-images so the two-level namespace
151                                           hints can always be used. */
152#define MH_NOFIXPREBINDING 0x400        /* do not have dyld notify the
153                                           prebinding agent about this
154                                           executable */
155#define MH_PREBINDABLE  0x800           /* the binary is not prebound but can
156                                           have its prebinding redone. only used
157                                           when MH_PREBOUND is not set. */
158#define MH_ALLMODSBOUND 0x1000          /* indicates that this binary binds to
159                                           all two-level namespace modules of
160                                           its dependent libraries. only used
161                                           when MH_PREBINDABLE and MH_TWOLEVEL
162                                           are both set. */ 
163#define MH_SUBSECTIONS_VIA_SYMBOLS 0x2000/* safe to divide up the sections into
164                                            sub-sections via symbols for dead
165                                            code stripping */
166#define MH_CANONICAL    0x4000          /* the binary has been canonicalized
167                                           via the unprebind operation */
168#define MH_WEAK_DEFINES 0x8000          /* the final linked image contains
169                                           external weak symbols */
170#define MH_BINDS_TO_WEAK 0x10000        /* the final linked image uses
171                                           weak symbols */
172
173#define MH_ALLOW_STACK_EXECUTION 0x20000/* When this bit is set, all stacks
174                                           in the task will be given stack
175                                           execution privilege.  Only used in
176                                           MH_EXECUTE filetypes. */
177#define MH_ROOT_SAFE 0x40000           /* When this bit is set, the binary
178                                          declares it is safe for use in
179                                          processes with uid zero */
180                                         
181#define MH_SETUID_SAFE 0x80000         /* When this bit is set, the binary
182                                          declares it is safe for use in
183                                          processes when issetugid() is true */
184
185#define MH_NO_REEXPORTED_DYLIBS 0x100000 /* When this bit is set on a dylib,
186                                          the static linker does not need to
187                                          examine dependent dylibs to see
188                                          if any are re-exported */
189#define MH_PIE 0x200000                 /* When this bit is set, the OS will
190                                           load the main executable at a
191                                           random address.  Only used in
192                                           MH_EXECUTE filetypes. */
193#define MH_DEAD_STRIPPABLE_DYLIB 0x400000 /* Only for use on dylibs.  When
194                                             linking against a dylib that
195                                             has this bit set, the static linker
196                                             will automatically not create a
197                                             LC_LOAD_DYLIB load command to the
198                                             dylib if no symbols are being
199                                             referenced from the dylib. */
200#define MH_HAS_TLV_DESCRIPTORS 0x800000 /* Contains a section of type
201                                            S_THREAD_LOCAL_VARIABLES */
202
203#define MH_NO_HEAP_EXECUTION 0x1000000  /* When this bit is set, the OS will
204                                           run the main executable with
205                                           a non-executable heap even on
206                                           platforms (e.g. i386) that don't
207                                           require it. Only used in MH_EXECUTE
208                                           filetypes. */
209
210/*
211 * The load commands directly follow the mach_header.  The total size of all
212 * of the commands is given by the sizeofcmds field in the mach_header.  All
213 * load commands must have as their first two fields cmd and cmdsize.  The cmd
214 * field is filled in with a constant for that command type.  Each command type
215 * has a structure specifically for it.  The cmdsize field is the size in bytes
216 * of the particular load command structure plus anything that follows it that
217 * is a part of the load command (i.e. section structures, strings, etc.).  To
218 * advance to the next load command the cmdsize can be added to the offset or
219 * pointer of the current load command.  The cmdsize for 32-bit architectures
220 * MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
221 * of 8 bytes (these are forever the maximum alignment of any load commands).
222 * The padded bytes must be zero.  All tables in the object file must also
223 * follow these rules so the file can be memory mapped.  Otherwise the pointers
224 * to these tables will not work well or at all on some machines.  With all
225 * padding zeroed like objects will compare byte for byte.
226 */
227struct load_command {
228        uint32_t cmd;           /* type of load command */
229        uint32_t cmdsize;       /* total size of command in bytes */
230};
231
232/*
233 * After MacOS X 10.1 when a new load command is added that is required to be
234 * understood by the dynamic linker for the image to execute properly the
235 * LC_REQ_DYLD bit will be or'ed into the load command constant.  If the dynamic
236 * linker sees such a load command it it does not understand will issue a
237 * "unknown load command required for execution" error and refuse to use the
238 * image.  Other load commands without this bit that are not understood will
239 * simply be ignored.
240 */
241#define LC_REQ_DYLD 0x80000000
242
243/* Constants for the cmd field of all load commands, the type */
244#define LC_SEGMENT      0x1     /* segment of this file to be mapped */
245#define LC_SYMTAB       0x2     /* link-edit stab symbol table info */
246#define LC_SYMSEG       0x3     /* link-edit gdb symbol table info (obsolete) */
247#define LC_THREAD       0x4     /* thread */
248#define LC_UNIXTHREAD   0x5     /* unix thread (includes a stack) */
249#define LC_LOADFVMLIB   0x6     /* load a specified fixed VM shared library */
250#define LC_IDFVMLIB     0x7     /* fixed VM shared library identification */
251#define LC_IDENT        0x8     /* object identification info (obsolete) */
252#define LC_FVMFILE      0x9     /* fixed VM file inclusion (internal use) */
253#define LC_PREPAGE      0xa     /* prepage command (internal use) */
254#define LC_DYSYMTAB     0xb     /* dynamic link-edit symbol table info */
255#define LC_LOAD_DYLIB   0xc     /* load a dynamically linked shared library */
256#define LC_ID_DYLIB     0xd     /* dynamically linked shared lib ident */
257#define LC_LOAD_DYLINKER 0xe    /* load a dynamic linker */
258#define LC_ID_DYLINKER  0xf     /* dynamic linker identification */
259#define LC_PREBOUND_DYLIB 0x10  /* modules prebound for a dynamically */
260                                /*  linked shared library */
261#define LC_ROUTINES     0x11    /* image routines */
262#define LC_SUB_FRAMEWORK 0x12   /* sub framework */
263#define LC_SUB_UMBRELLA 0x13    /* sub umbrella */
264#define LC_SUB_CLIENT   0x14    /* sub client */
265#define LC_SUB_LIBRARY  0x15    /* sub library */
266#define LC_TWOLEVEL_HINTS 0x16  /* two-level namespace lookup hints */
267#define LC_PREBIND_CKSUM  0x17  /* prebind checksum */
268
269/*
270 * load a dynamically linked shared library that is allowed to be missing
271 * (all symbols are weak imported).
272 */
273#define LC_LOAD_WEAK_DYLIB (0x18 | LC_REQ_DYLD)
274
275#define LC_SEGMENT_64   0x19    /* 64-bit segment of this file to be
276                                   mapped */
277#define LC_ROUTINES_64  0x1a    /* 64-bit image routines */
278#define LC_UUID         0x1b    /* the uuid */
279#define LC_RPATH       (0x1c | LC_REQ_DYLD)    /* runpath additions */
280#define LC_CODE_SIGNATURE 0x1d  /* local of code signature */
281#define LC_SEGMENT_SPLIT_INFO 0x1e /* local of info to split segments */
282#define LC_REEXPORT_DYLIB (0x1f | LC_REQ_DYLD) /* load and re-export dylib */
283#define LC_LAZY_LOAD_DYLIB 0x20 /* delay load of dylib until first use */
284#define LC_ENCRYPTION_INFO 0x21 /* encrypted segment information */
285#define LC_DYLD_INFO    0x22    /* compressed dyld information */
286#define LC_DYLD_INFO_ONLY (0x22|LC_REQ_DYLD)    /* compressed dyld information only */
287#define LC_LOAD_UPWARD_DYLIB (0x23 | LC_REQ_DYLD) /* load upward dylib */
288#define LC_VERSION_MIN_MACOSX 0x24   /* build for MacOSX min OS version */
289#define LC_VERSION_MIN_IPHONEOS 0x25 /* build for iPhoneOS min OS version */
290#define LC_FUNCTION_STARTS 0x26 /* compressed table of function start addresses */
291
292/*
293 * A variable length string in a load command is represented by an lc_str
294 * union.  The strings are stored just after the load command structure and
295 * the offset is from the start of the load command structure.  The size
296 * of the string is reflected in the cmdsize field of the load command.
297 * Once again any padded bytes to bring the cmdsize field to a multiple
298 * of 4 bytes must be zero.
299 */
300union lc_str {
301        uint32_t        offset; /* offset to the string */
302#ifndef __LP64__
303        char            *ptr;   /* pointer to the string */
304#endif
305};
306
307/*
308 * The segment load command indicates that a part of this file is to be
309 * mapped into the task's address space.  The size of this segment in memory,
310 * vmsize, maybe equal to or larger than the amount to map from this file,
311 * filesize.  The file is mapped starting at fileoff to the beginning of
312 * the segment in memory, vmaddr.  The rest of the memory of the segment,
313 * if any, is allocated zero fill on demand.  The segment's maximum virtual
314 * memory protection and initial virtual memory protection are specified
315 * by the maxprot and initprot fields.  If the segment has sections then the
316 * section structures directly follow the segment command and their size is
317 * reflected in cmdsize.
318 */
319struct segment_command { /* for 32-bit architectures */
320        uint32_t        cmd;            /* LC_SEGMENT */
321        uint32_t        cmdsize;        /* includes sizeof section structs */
322        char            segname[16];    /* segment name */
323        uint32_t        vmaddr;         /* memory address of this segment */
324        uint32_t        vmsize;         /* memory size of this segment */
325        uint32_t        fileoff;        /* file offset of this segment */
326        uint32_t        filesize;       /* amount to map from the file */
327        vm_prot_t       maxprot;        /* maximum VM protection */
328        vm_prot_t       initprot;       /* initial VM protection */
329        uint32_t        nsects;         /* number of sections in segment */
330        uint32_t        flags;          /* flags */
331};
332
333/*
334 * The 64-bit segment load command indicates that a part of this file is to be
335 * mapped into a 64-bit task's address space.  If the 64-bit segment has
336 * sections then section_64 structures directly follow the 64-bit segment
337 * command and their size is reflected in cmdsize.
338 */
339struct segment_command_64 { /* for 64-bit architectures */
340        uint32_t        cmd;            /* LC_SEGMENT_64 */
341        uint32_t        cmdsize;        /* includes sizeof section_64 structs */
342        char            segname[16];    /* segment name */
343        uint64_t        vmaddr;         /* memory address of this segment */
344        uint64_t        vmsize;         /* memory size of this segment */
345        uint64_t        fileoff;        /* file offset of this segment */
346        uint64_t        filesize;       /* amount to map from the file */
347        vm_prot_t       maxprot;        /* maximum VM protection */
348        vm_prot_t       initprot;       /* initial VM protection */
349        uint32_t        nsects;         /* number of sections in segment */
350        uint32_t        flags;          /* flags */
351};
352
353/* Constants for the flags field of the segment_command */
354#define SG_HIGHVM       0x1     /* the file contents for this segment is for
355                                   the high part of the VM space, the low part
356                                   is zero filled (for stacks in core files) */
357#define SG_FVMLIB       0x2     /* this segment is the VM that is allocated by
358                                   a fixed VM library, for overlap checking in
359                                   the link editor */
360#define SG_NORELOC      0x4     /* this segment has nothing that was relocated
361                                   in it and nothing relocated to it, that is
362                                   it maybe safely replaced without relocation*/
363#define SG_PROTECTED_VERSION_1  0x8 /* This segment is protected.  If the
364                                       segment starts at file offset 0, the
365                                       first page of the segment is not
366                                       protected.  All other pages of the
367                                       segment are protected. */
368
369/*
370 * A segment is made up of zero or more sections.  Non-MH_OBJECT files have
371 * all of their segments with the proper sections in each, and padded to the
372 * specified segment alignment when produced by the link editor.  The first
373 * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
374 * and load commands of the object file before its first section.  The zero
375 * fill sections are always last in their segment (in all formats).  This
376 * allows the zeroed segment padding to be mapped into memory where zero fill
377 * sections might be. The gigabyte zero fill sections, those with the section
378 * type S_GB_ZEROFILL, can only be in a segment with sections of this type.
379 * These segments are then placed after all other segments.
380 *
381 * The MH_OBJECT format has all of its sections in one segment for
382 * compactness.  There is no padding to a specified segment boundary and the
383 * mach_header and load commands are not part of the segment.
384 *
385 * Sections with the same section name, sectname, going into the same segment,
386 * segname, are combined by the link editor.  The resulting section is aligned
387 * to the maximum alignment of the combined sections and is the new section's
388 * alignment.  The combined sections are aligned to their original alignment in
389 * the combined section.  Any padded bytes to get the specified alignment are
390 * zeroed.
391 *
392 * The format of the relocation entries referenced by the reloff and nreloc
393 * fields of the section structure for mach object files is described in the
394 * header file <reloc.h>.
395 */
396struct section { /* for 32-bit architectures */
397        char            sectname[16];   /* name of this section */
398        char            segname[16];    /* segment this section goes in */
399        uint32_t        addr;           /* memory address of this section */
400        uint32_t        size;           /* size in bytes of this section */
401        uint32_t        offset;         /* file offset of this section */
402        uint32_t        align;          /* section alignment (power of 2) */
403        uint32_t        reloff;         /* file offset of relocation entries */
404        uint32_t        nreloc;         /* number of relocation entries */
405        uint32_t        flags;          /* flags (section type and attributes)*/
406        uint32_t        reserved1;      /* reserved (for offset or index) */
407        uint32_t        reserved2;      /* reserved (for count or sizeof) */
408};
409
410struct section_64 { /* for 64-bit architectures */
411        char            sectname[16];   /* name of this section */
412        char            segname[16];    /* segment this section goes in */
413        uint64_t        addr;           /* memory address of this section */
414        uint64_t        size;           /* size in bytes of this section */
415        uint32_t        offset;         /* file offset of this section */
416        uint32_t        align;          /* section alignment (power of 2) */
417        uint32_t        reloff;         /* file offset of relocation entries */
418        uint32_t        nreloc;         /* number of relocation entries */
419        uint32_t        flags;          /* flags (section type and attributes)*/
420        uint32_t        reserved1;      /* reserved (for offset or index) */
421        uint32_t        reserved2;      /* reserved (for count or sizeof) */
422        uint32_t        reserved3;      /* reserved */
423};
424
425/*
426 * The flags field of a section structure is separated into two parts a section
427 * type and section attributes.  The section types are mutually exclusive (it
428 * can only have one type) but the section attributes are not (it may have more
429 * than one attribute).
430 */
431#define SECTION_TYPE             0x000000ff     /* 256 section types */
432#define SECTION_ATTRIBUTES       0xffffff00     /*  24 section attributes */
433
434/* Constants for the type of a section */
435#define S_REGULAR               0x0     /* regular section */
436#define S_ZEROFILL              0x1     /* zero fill on demand section */
437#define S_CSTRING_LITERALS      0x2     /* section with only literal C strings*/
438#define S_4BYTE_LITERALS        0x3     /* section with only 4 byte literals */
439#define S_8BYTE_LITERALS        0x4     /* section with only 8 byte literals */
440#define S_LITERAL_POINTERS      0x5     /* section with only pointers to */
441                                        /*  literals */
442/*
443 * For the two types of symbol pointers sections and the symbol stubs section
444 * they have indirect symbol table entries.  For each of the entries in the
445 * section the indirect symbol table entries, in corresponding order in the
446 * indirect symbol table, start at the index stored in the reserved1 field
447 * of the section structure.  Since the indirect symbol table entries
448 * correspond to the entries in the section the number of indirect symbol table
449 * entries is inferred from the size of the section divided by the size of the
450 * entries in the section.  For symbol pointers sections the size of the entries
451 * in the section is 4 bytes and for symbol stubs sections the byte size of the
452 * stubs is stored in the reserved2 field of the section structure.
453 */
454#define S_NON_LAZY_SYMBOL_POINTERS      0x6     /* section with only non-lazy
455                                                   symbol pointers */
456#define S_LAZY_SYMBOL_POINTERS          0x7     /* section with only lazy symbol
457                                                   pointers */
458#define S_SYMBOL_STUBS                  0x8     /* section with only symbol
459                                                   stubs, byte size of stub in
460                                                   the reserved2 field */
461#define S_MOD_INIT_FUNC_POINTERS        0x9     /* section with only function
462                                                   pointers for initialization*/
463#define S_MOD_TERM_FUNC_POINTERS        0xa     /* section with only function
464                                                   pointers for termination */
465#define S_COALESCED                     0xb     /* section contains symbols that
466                                                   are to be coalesced */
467#define S_GB_ZEROFILL                   0xc     /* zero fill on demand section
468                                                   (that can be larger than 4
469                                                   gigabytes) */
470#define S_INTERPOSING                   0xd     /* section with only pairs of
471                                                   function pointers for
472                                                   interposing */
473#define S_16BYTE_LITERALS               0xe     /* section with only 16 byte
474                                                   literals */
475#define S_DTRACE_DOF                    0xf     /* section contains
476                                                   DTrace Object Format */
477#define S_LAZY_DYLIB_SYMBOL_POINTERS    0x10    /* section with only lazy
478                                                   symbol pointers to lazy
479                                                   loaded dylibs */
480/*
481 * Section types to support thread local variables
482 */
483#define S_THREAD_LOCAL_REGULAR                   0x11  /* template of initial
484                                                          values for TLVs */
485#define S_THREAD_LOCAL_ZEROFILL                  0x12  /* template of initial
486                                                          values for TLVs */
487#define S_THREAD_LOCAL_VARIABLES                 0x13  /* TLV descriptors */
488#define S_THREAD_LOCAL_VARIABLE_POINTERS         0x14  /* pointers to TLV
489                                                          descriptors */
490#define S_THREAD_LOCAL_INIT_FUNCTION_POINTERS    0x15  /* functions to call
491                                                          to initialize TLV
492                                                          values */
493
494/*
495 * Constants for the section attributes part of the flags field of a section
496 * structure.
497 */
498#define SECTION_ATTRIBUTES_USR   0xff000000     /* User setable attributes */
499#define S_ATTR_PURE_INSTRUCTIONS 0x80000000     /* section contains only true
500                                                   machine instructions */
501#define S_ATTR_NO_TOC            0x40000000     /* section contains coalesced
502                                                   symbols that are not to be
503                                                   in a ranlib table of
504                                                   contents */
505#define S_ATTR_STRIP_STATIC_SYMS 0x20000000     /* ok to strip static symbols
506                                                   in this section in files
507                                                   with the MH_DYLDLINK flag */
508#define S_ATTR_NO_DEAD_STRIP     0x10000000     /* no dead stripping */
509#define S_ATTR_LIVE_SUPPORT      0x08000000     /* blocks are live if they
510                                                   reference live blocks */
511#define S_ATTR_SELF_MODIFYING_CODE 0x04000000   /* Used with i386 code stubs
512                                                   written on by dyld */
513/*
514 * If a segment contains any sections marked with S_ATTR_DEBUG then all
515 * sections in that segment must have this attribute.  No section other than
516 * a section marked with this attribute may reference the contents of this
517 * section.  A section with this attribute may contain no symbols and must have
518 * a section type S_REGULAR.  The static linker will not copy section contents
519 * from sections with this attribute into its output file.  These sections
520 * generally contain DWARF debugging info.
521 */ 
522#define S_ATTR_DEBUG             0x02000000     /* a debug section */
523#define SECTION_ATTRIBUTES_SYS   0x00ffff00     /* system setable attributes */
524#define S_ATTR_SOME_INSTRUCTIONS 0x00000400     /* section contains some
525                                                   machine instructions */
526#define S_ATTR_EXT_RELOC         0x00000200     /* section has external
527                                                   relocation entries */
528#define S_ATTR_LOC_RELOC         0x00000100     /* section has local
529                                                   relocation entries */
530
531
532/*
533 * The names of segments and sections in them are mostly meaningless to the
534 * link-editor.  But there are few things to support traditional UNIX
535 * executables that require the link-editor and assembler to use some names
536 * agreed upon by convention.
537 *
538 * The initial protection of the "__TEXT" segment has write protection turned
539 * off (not writeable).
540 *
541 * The link-editor will allocate common symbols at the end of the "__common"
542 * section in the "__DATA" segment.  It will create the section and segment
543 * if needed.
544 */
545
546/* The currently known segment names and the section names in those segments */
547
548#define SEG_PAGEZERO    "__PAGEZERO"    /* the pagezero segment which has no */
549                                        /* protections and catches NULL */
550                                        /* references for MH_EXECUTE files */
551
552
553#define SEG_TEXT        "__TEXT"        /* the tradition UNIX text segment */
554#define SECT_TEXT       "__text"        /* the real text part of the text */
555                                        /* section no headers, and no padding */
556#define SECT_FVMLIB_INIT0 "__fvmlib_init0"      /* the fvmlib initialization */
557                                                /*  section */
558#define SECT_FVMLIB_INIT1 "__fvmlib_init1"      /* the section following the */
559                                                /*  fvmlib initialization */
560                                                /*  section */
561
562#define SEG_DATA        "__DATA"        /* the tradition UNIX data segment */
563#define SECT_DATA       "__data"        /* the real initialized data section */
564                                        /* no padding, no bss overlap */
565#define SECT_BSS        "__bss"         /* the real uninitialized data section*/
566                                        /* no padding */
567#define SECT_COMMON     "__common"      /* the section common symbols are */
568                                        /* allocated in by the link editor */
569
570#define SEG_OBJC        "__OBJC"        /* objective-C runtime segment */
571#define SECT_OBJC_SYMBOLS "__symbol_table"      /* symbol table */
572#define SECT_OBJC_MODULES "__module_info"       /* module information */
573#define SECT_OBJC_STRINGS "__selector_strs"     /* string table */
574#define SECT_OBJC_REFS "__selector_refs"        /* string table */
575
576#define SEG_ICON         "__ICON"       /* the icon segment */
577#define SECT_ICON_HEADER "__header"     /* the icon headers */
578#define SECT_ICON_TIFF   "__tiff"       /* the icons in tiff format */
579
580#define SEG_LINKEDIT    "__LINKEDIT"    /* the segment containing all structs */
581                                        /* created and maintained by the link */
582                                        /* editor.  Created with -seglinkedit */
583                                        /* option to ld(1) for MH_EXECUTE and */
584                                        /* FVMLIB file types only */
585
586#define SEG_UNIXSTACK   "__UNIXSTACK"   /* the unix stack segment */
587
588#define SEG_IMPORT      "__IMPORT"      /* the segment for the self (dyld) */
589                                        /* modifing code stubs that has read, */
590                                        /* write and execute permissions */
591
592/*
593 * Fixed virtual memory shared libraries are identified by two things.  The
594 * target pathname (the name of the library as found for execution), and the
595 * minor version number.  The address of where the headers are loaded is in
596 * header_addr. (THIS IS OBSOLETE and no longer supported).
597 */
598struct fvmlib {
599        union lc_str    name;           /* library's target pathname */
600        uint32_t        minor_version;  /* library's minor version number */
601        uint32_t        header_addr;    /* library's header address */
602};
603
604/*
605 * A fixed virtual shared library (filetype == MH_FVMLIB in the mach header)
606 * contains a fvmlib_command (cmd == LC_IDFVMLIB) to identify the library.
607 * An object that uses a fixed virtual shared library also contains a
608 * fvmlib_command (cmd == LC_LOADFVMLIB) for each library it uses.
609 * (THIS IS OBSOLETE and no longer supported).
610 */
611struct fvmlib_command {
612        uint32_t        cmd;            /* LC_IDFVMLIB or LC_LOADFVMLIB */
613        uint32_t        cmdsize;        /* includes pathname string */
614        struct fvmlib   fvmlib;         /* the library identification */
615};
616
617/*
618 * Dynamicly linked shared libraries are identified by two things.  The
619 * pathname (the name of the library as found for execution), and the
620 * compatibility version number.  The pathname must match and the compatibility
621 * number in the user of the library must be greater than or equal to the
622 * library being used.  The time stamp is used to record the time a library was
623 * built and copied into user so it can be use to determined if the library used
624 * at runtime is exactly the same as used to built the program.
625 */
626struct dylib {
627    union lc_str  name;                 /* library's path name */
628    uint32_t timestamp;                 /* library's build time stamp */
629    uint32_t current_version;           /* library's current version number */
630    uint32_t compatibility_version;     /* library's compatibility vers number*/
631};
632
633/*
634 * A dynamically linked shared library (filetype == MH_DYLIB in the mach header)
635 * contains a dylib_command (cmd == LC_ID_DYLIB) to identify the library.
636 * An object that uses a dynamically linked shared library also contains a
637 * dylib_command (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or
638 * LC_REEXPORT_DYLIB) for each library it uses.
639 */
640struct dylib_command {
641        uint32_t        cmd;            /* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB,
642                                           LC_REEXPORT_DYLIB */
643        uint32_t        cmdsize;        /* includes pathname string */
644        struct dylib    dylib;          /* the library identification */
645};
646
647/*
648 * A dynamically linked shared library may be a subframework of an umbrella
649 * framework.  If so it will be linked with "-umbrella umbrella_name" where
650 * Where "umbrella_name" is the name of the umbrella framework. A subframework
651 * can only be linked against by its umbrella framework or other subframeworks
652 * that are part of the same umbrella framework.  Otherwise the static link
653 * editor produces an error and states to link against the umbrella framework.
654 * The name of the umbrella framework for subframeworks is recorded in the
655 * following structure.
656 */
657struct sub_framework_command {
658        uint32_t        cmd;            /* LC_SUB_FRAMEWORK */
659        uint32_t        cmdsize;        /* includes umbrella string */
660        union lc_str    umbrella;       /* the umbrella framework name */
661};
662
663/*
664 * For dynamically linked shared libraries that are subframework of an umbrella
665 * framework they can allow clients other than the umbrella framework or other
666 * subframeworks in the same umbrella framework.  To do this the subframework
667 * is built with "-allowable_client client_name" and an LC_SUB_CLIENT load
668 * command is created for each -allowable_client flag.  The client_name is
669 * usually a framework name.  It can also be a name used for bundles clients
670 * where the bundle is built with "-client_name client_name".
671 */
672struct sub_client_command {
673        uint32_t        cmd;            /* LC_SUB_CLIENT */
674        uint32_t        cmdsize;        /* includes client string */
675        union lc_str    client;         /* the client name */
676};
677
678/*
679 * A dynamically linked shared library may be a sub_umbrella of an umbrella
680 * framework.  If so it will be linked with "-sub_umbrella umbrella_name" where
681 * Where "umbrella_name" is the name of the sub_umbrella framework.  When
682 * staticly linking when -twolevel_namespace is in effect a twolevel namespace
683 * umbrella framework will only cause its subframeworks and those frameworks
684 * listed as sub_umbrella frameworks to be implicited linked in.  Any other
685 * dependent dynamic libraries will not be linked it when -twolevel_namespace
686 * is in effect.  The primary library recorded by the static linker when
687 * resolving a symbol in these libraries will be the umbrella framework.
688 * Zero or more sub_umbrella frameworks may be use by an umbrella framework.
689 * The name of a sub_umbrella framework is recorded in the following structure.
690 */
691struct sub_umbrella_command {
692        uint32_t        cmd;            /* LC_SUB_UMBRELLA */
693        uint32_t        cmdsize;        /* includes sub_umbrella string */
694        union lc_str    sub_umbrella;   /* the sub_umbrella framework name */
695};
696
697/*
698 * A dynamically linked shared library may be a sub_library of another shared
699 * library.  If so it will be linked with "-sub_library library_name" where
700 * Where "library_name" is the name of the sub_library shared library.  When
701 * staticly linking when -twolevel_namespace is in effect a twolevel namespace
702 * shared library will only cause its subframeworks and those frameworks
703 * listed as sub_umbrella frameworks and libraries listed as sub_libraries to
704 * be implicited linked in.  Any other dependent dynamic libraries will not be
705 * linked it when -twolevel_namespace is in effect.  The primary library
706 * recorded by the static linker when resolving a symbol in these libraries
707 * will be the umbrella framework (or dynamic library). Zero or more sub_library
708 * shared libraries may be use by an umbrella framework or (or dynamic library).
709 * The name of a sub_library framework is recorded in the following structure.
710 * For example /usr/lib/libobjc_profile.A.dylib would be recorded as "libobjc".
711 */
712struct sub_library_command {
713        uint32_t        cmd;            /* LC_SUB_LIBRARY */
714        uint32_t        cmdsize;        /* includes sub_library string */
715        union lc_str    sub_library;    /* the sub_library name */
716};
717
718/*
719 * A program (filetype == MH_EXECUTE) that is
720 * prebound to its dynamic libraries has one of these for each library that
721 * the static linker used in prebinding.  It contains a bit vector for the
722 * modules in the library.  The bits indicate which modules are bound (1) and
723 * which are not (0) from the library.  The bit for module 0 is the low bit
724 * of the first byte.  So the bit for the Nth module is:
725 * (linked_modules[N/8] >> N%8) & 1
726 */
727struct prebound_dylib_command {
728        uint32_t        cmd;            /* LC_PREBOUND_DYLIB */
729        uint32_t        cmdsize;        /* includes strings */
730        union lc_str    name;           /* library's path name */
731        uint32_t        nmodules;       /* number of modules in library */
732        union lc_str    linked_modules; /* bit vector of linked modules */
733};
734
735/*
736 * A program that uses a dynamic linker contains a dylinker_command to identify
737 * the name of the dynamic linker (LC_LOAD_DYLINKER).  And a dynamic linker
738 * contains a dylinker_command to identify the dynamic linker (LC_ID_DYLINKER).
739 * A file can have at most one of these.
740 */
741struct dylinker_command {
742        uint32_t        cmd;            /* LC_ID_DYLINKER or LC_LOAD_DYLINKER */
743        uint32_t        cmdsize;        /* includes pathname string */
744        union lc_str    name;           /* dynamic linker's path name */
745};
746
747/*
748 * Thread commands contain machine-specific data structures suitable for
749 * use in the thread state primitives.  The machine specific data structures
750 * follow the struct thread_command as follows.
751 * Each flavor of machine specific data structure is preceded by an unsigned
752 * long constant for the flavor of that data structure, an uint32_t
753 * that is the count of longs of the size of the state data structure and then
754 * the state data structure follows.  This triple may be repeated for many
755 * flavors.  The constants for the flavors, counts and state data structure
756 * definitions are expected to be in the header file <machine/thread_status.h>.
757 * These machine specific data structures sizes must be multiples of
758 * 4 bytes  The cmdsize reflects the total size of the thread_command
759 * and all of the sizes of the constants for the flavors, counts and state
760 * data structures.
761 *
762 * For executable objects that are unix processes there will be one
763 * thread_command (cmd == LC_UNIXTHREAD) created for it by the link-editor.
764 * This is the same as a LC_THREAD, except that a stack is automatically
765 * created (based on the shell's limit for the stack size).  Command arguments
766 * and environment variables are copied onto that stack.
767 */
768struct thread_command {
769        uint32_t        cmd;            /* LC_THREAD or  LC_UNIXTHREAD */
770        uint32_t        cmdsize;        /* total size of this command */
771        /* uint32_t flavor                 flavor of thread state */
772        /* uint32_t count                  count of longs in thread state */
773        /* struct XXX_thread_state state   thread state for this flavor */
774        /* ... */
775};
776
777/*
778 * The routines command contains the address of the dynamic shared library
779 * initialization routine and an index into the module table for the module
780 * that defines the routine.  Before any modules are used from the library the
781 * dynamic linker fully binds the module that defines the initialization routine
782 * and then calls it.  This gets called before any module initialization
783 * routines (used for C++ static constructors) in the library.
784 */
785struct routines_command { /* for 32-bit architectures */
786        uint32_t        cmd;            /* LC_ROUTINES */
787        uint32_t        cmdsize;        /* total size of this command */
788        uint32_t        init_address;   /* address of initialization routine */
789        uint32_t        init_module;    /* index into the module table that */
790                                        /*  the init routine is defined in */
791        uint32_t        reserved1;
792        uint32_t        reserved2;
793        uint32_t        reserved3;
794        uint32_t        reserved4;
795        uint32_t        reserved5;
796        uint32_t        reserved6;
797};
798
799/*
800 * The 64-bit routines command.  Same use as above.
801 */
802struct routines_command_64 { /* for 64-bit architectures */
803        uint32_t        cmd;            /* LC_ROUTINES_64 */
804        uint32_t        cmdsize;        /* total size of this command */
805        uint64_t        init_address;   /* address of initialization routine */
806        uint64_t        init_module;    /* index into the module table that */
807                                        /*  the init routine is defined in */
808        uint64_t        reserved1;
809        uint64_t        reserved2;
810        uint64_t        reserved3;
811        uint64_t        reserved4;
812        uint64_t        reserved5;
813        uint64_t        reserved6;
814};
815
816/*
817 * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
818 * "stab" style symbol table information as described in the header files
819 * <nlist.h> and <stab.h>.
820 */
821struct symtab_command {
822        uint32_t        cmd;            /* LC_SYMTAB */
823        uint32_t        cmdsize;        /* sizeof(struct symtab_command) */
824        uint32_t        symoff;         /* symbol table offset */
825        uint32_t        nsyms;          /* number of symbol table entries */
826        uint32_t        stroff;         /* string table offset */
827        uint32_t        strsize;        /* string table size in bytes */
828};
829
830/*
831 * This is the second set of the symbolic information which is used to support
832 * the data structures for the dynamically link editor.
833 *
834 * The original set of symbolic information in the symtab_command which contains
835 * the symbol and string tables must also be present when this load command is
836 * present.  When this load command is present the symbol table is organized
837 * into three groups of symbols:
838 *      local symbols (static and debugging symbols) - grouped by module
839 *      defined external symbols - grouped by module (sorted by name if not lib)
840 *      undefined external symbols (sorted by name if MH_BINDATLOAD is not set,
841 *                                  and in order the were seen by the static
842 *                                  linker if MH_BINDATLOAD is set)
843 * In this load command there are offsets and counts to each of the three groups
844 * of symbols.
845 *
846 * This load command contains a the offsets and sizes of the following new
847 * symbolic information tables:
848 *      table of contents
849 *      module table
850 *      reference symbol table
851 *      indirect symbol table
852 * The first three tables above (the table of contents, module table and
853 * reference symbol table) are only present if the file is a dynamically linked
854 * shared library.  For executable and object modules, which are files
855 * containing only one module, the information that would be in these three
856 * tables is determined as follows:
857 *      table of contents - the defined external symbols are sorted by name
858 *      module table - the file contains only one module so everything in the
859 *                     file is part of the module.
860 *      reference symbol table - is the defined and undefined external symbols
861 *
862 * For dynamically linked shared library files this load command also contains
863 * offsets and sizes to the pool of relocation entries for all sections
864 * separated into two groups:
865 *      external relocation entries
866 *      local relocation entries
867 * For executable and object modules the relocation entries continue to hang
868 * off the section structures.
869 */
870struct dysymtab_command {
871    uint32_t cmd;       /* LC_DYSYMTAB */
872    uint32_t cmdsize;   /* sizeof(struct dysymtab_command) */
873
874    /*
875     * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command
876     * are grouped into the following three groups:
877     *    local symbols (further grouped by the module they are from)
878     *    defined external symbols (further grouped by the module they are from)
879     *    undefined symbols
880     *
881     * The local symbols are used only for debugging.  The dynamic binding
882     * process may have to use them to indicate to the debugger the local
883     * symbols for a module that is being bound.
884     *
885     * The last two groups are used by the dynamic binding process to do the
886     * binding (indirectly through the module table and the reference symbol
887     * table when this is a dynamically linked shared library file).
888     */
889    uint32_t ilocalsym; /* index to local symbols */
890    uint32_t nlocalsym; /* number of local symbols */
891
892    uint32_t iextdefsym;/* index to externally defined symbols */
893    uint32_t nextdefsym;/* number of externally defined symbols */
894
895    uint32_t iundefsym; /* index to undefined symbols */
896    uint32_t nundefsym; /* number of undefined symbols */
897
898    /*
899     * For the for the dynamic binding process to find which module a symbol
900     * is defined in the table of contents is used (analogous to the ranlib
901     * structure in an archive) which maps defined external symbols to modules
902     * they are defined in.  This exists only in a dynamically linked shared
903     * library file.  For executable and object modules the defined external
904     * symbols are sorted by name and is use as the table of contents.
905     */
906    uint32_t tocoff;    /* file offset to table of contents */
907    uint32_t ntoc;      /* number of entries in table of contents */
908
909    /*
910     * To support dynamic binding of "modules" (whole object files) the symbol
911     * table must reflect the modules that the file was created from.  This is
912     * done by having a module table that has indexes and counts into the merged
913     * tables for each module.  The module structure that these two entries
914     * refer to is described below.  This exists only in a dynamically linked
915     * shared library file.  For executable and object modules the file only
916     * contains one module so everything in the file belongs to the module.
917     */
918    uint32_t modtaboff; /* file offset to module table */
919    uint32_t nmodtab;   /* number of module table entries */
920
921    /*
922     * To support dynamic module binding the module structure for each module
923     * indicates the external references (defined and undefined) each module
924     * makes.  For each module there is an offset and a count into the
925     * reference symbol table for the symbols that the module references.
926     * This exists only in a dynamically linked shared library file.  For
927     * executable and object modules the defined external symbols and the
928     * undefined external symbols indicates the external references.
929     */
930    uint32_t extrefsymoff;      /* offset to referenced symbol table */
931    uint32_t nextrefsyms;       /* number of referenced symbol table entries */
932
933    /*
934     * The sections that contain "symbol pointers" and "routine stubs" have
935     * indexes and (implied counts based on the size of the section and fixed
936     * size of the entry) into the "indirect symbol" table for each pointer
937     * and stub.  For every section of these two types the index into the
938     * indirect symbol table is stored in the section header in the field
939     * reserved1.  An indirect symbol table entry is simply a 32bit index into
940     * the symbol table to the symbol that the pointer or stub is referring to.
941     * The indirect symbol table is ordered to match the entries in the section.
942     */
943    uint32_t indirectsymoff; /* file offset to the indirect symbol table */
944    uint32_t nindirectsyms;  /* number of indirect symbol table entries */
945
946    /*
947     * To support relocating an individual module in a library file quickly the
948     * external relocation entries for each module in the library need to be
949     * accessed efficiently.  Since the relocation entries can't be accessed
950     * through the section headers for a library file they are separated into
951     * groups of local and external entries further grouped by module.  In this
952     * case the presents of this load command who's extreloff, nextrel,
953     * locreloff and nlocrel fields are non-zero indicates that the relocation
954     * entries of non-merged sections are not referenced through the section
955     * structures (and the reloff and nreloc fields in the section headers are
956     * set to zero).
957     *
958     * Since the relocation entries are not accessed through the section headers
959     * this requires the r_address field to be something other than a section
960     * offset to identify the item to be relocated.  In this case r_address is
961     * set to the offset from the vmaddr of the first LC_SEGMENT command.
962     * For MH_SPLIT_SEGS images r_address is set to the the offset from the
963     * vmaddr of the first read-write LC_SEGMENT command.
964     *
965     * The relocation entries are grouped by module and the module table
966     * entries have indexes and counts into them for the group of external
967     * relocation entries for that the module.
968     *
969     * For sections that are merged across modules there must not be any
970     * remaining external relocation entries for them (for merged sections
971     * remaining relocation entries must be local).
972     */
973    uint32_t extreloff; /* offset to external relocation entries */
974    uint32_t nextrel;   /* number of external relocation entries */
975
976    /*
977     * All the local relocation entries are grouped together (they are not
978     * grouped by their module since they are only used if the object is moved
979     * from it staticly link edited address).
980     */
981    uint32_t locreloff; /* offset to local relocation entries */
982    uint32_t nlocrel;   /* number of local relocation entries */
983
984};     
985
986/*
987 * An indirect symbol table entry is simply a 32bit index into the symbol table
988 * to the symbol that the pointer or stub is refering to.  Unless it is for a
989 * non-lazy symbol pointer section for a defined symbol which strip(1) as
990 * removed.  In which case it has the value INDIRECT_SYMBOL_LOCAL.  If the
991 * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that.
992 */
993#define INDIRECT_SYMBOL_LOCAL   0x80000000
994#define INDIRECT_SYMBOL_ABS     0x40000000
995
996
997/* a table of contents entry */
998struct dylib_table_of_contents {
999    uint32_t symbol_index;      /* the defined external symbol
1000                                   (index into the symbol table) */
1001    uint32_t module_index;      /* index into the module table this symbol
1002                                   is defined in */
1003};     
1004
1005/* a module table entry */
1006struct dylib_module {
1007    uint32_t module_name;       /* the module name (index into string table) */
1008
1009    uint32_t iextdefsym;        /* index into externally defined symbols */
1010    uint32_t nextdefsym;        /* number of externally defined symbols */
1011    uint32_t irefsym;           /* index into reference symbol table */
1012    uint32_t nrefsym;           /* number of reference symbol table entries */
1013    uint32_t ilocalsym;         /* index into symbols for local symbols */
1014    uint32_t nlocalsym;         /* number of local symbols */
1015
1016    uint32_t iextrel;           /* index into external relocation entries */
1017    uint32_t nextrel;           /* number of external relocation entries */
1018
1019    uint32_t iinit_iterm;       /* low 16 bits are the index into the init
1020                                   section, high 16 bits are the index into
1021                                   the term section */
1022    uint32_t ninit_nterm;       /* low 16 bits are the number of init section
1023                                   entries, high 16 bits are the number of
1024                                   term section entries */
1025
1026    uint32_t                    /* for this module address of the start of */
1027        objc_module_info_addr;  /*  the (__OBJC,__module_info) section */
1028    uint32_t                    /* for this module size of */
1029        objc_module_info_size;  /*  the (__OBJC,__module_info) section */
1030};     
1031
1032/* a 64-bit module table entry */
1033struct dylib_module_64 {
1034    uint32_t module_name;       /* the module name (index into string table) */
1035
1036    uint32_t iextdefsym;        /* index into externally defined symbols */
1037    uint32_t nextdefsym;        /* number of externally defined symbols */
1038    uint32_t irefsym;           /* index into reference symbol table */
1039    uint32_t nrefsym;           /* number of reference symbol table entries */
1040    uint32_t ilocalsym;         /* index into symbols for local symbols */
1041    uint32_t nlocalsym;         /* number of local symbols */
1042
1043    uint32_t iextrel;           /* index into external relocation entries */
1044    uint32_t nextrel;           /* number of external relocation entries */
1045
1046    uint32_t iinit_iterm;       /* low 16 bits are the index into the init
1047                                   section, high 16 bits are the index into
1048                                   the term section */
1049    uint32_t ninit_nterm;      /* low 16 bits are the number of init section
1050                                  entries, high 16 bits are the number of
1051                                  term section entries */
1052
1053    uint32_t                    /* for this module size of */
1054        objc_module_info_size;  /*  the (__OBJC,__module_info) section */
1055    uint64_t                    /* for this module address of the start of */
1056        objc_module_info_addr;  /*  the (__OBJC,__module_info) section */
1057};
1058
1059/*
1060 * The entries in the reference symbol table are used when loading the module
1061 * (both by the static and dynamic link editors) and if the module is unloaded
1062 * or replaced.  Therefore all external symbols (defined and undefined) are
1063 * listed in the module's reference table.  The flags describe the type of
1064 * reference that is being made.  The constants for the flags are defined in
1065 * <mach-o/nlist.h> as they are also used for symbol table entries.
1066 */
1067struct dylib_reference {
1068    uint32_t isym:24,           /* index into the symbol table */
1069                  flags:8;      /* flags to indicate the type of reference */
1070};
1071
1072/*
1073 * The twolevel_hints_command contains the offset and number of hints in the
1074 * two-level namespace lookup hints table.
1075 */
1076struct twolevel_hints_command {
1077    uint32_t cmd;       /* LC_TWOLEVEL_HINTS */
1078    uint32_t cmdsize;   /* sizeof(struct twolevel_hints_command) */
1079    uint32_t offset;    /* offset to the hint table */
1080    uint32_t nhints;    /* number of hints in the hint table */
1081};
1082
1083/*
1084 * The entries in the two-level namespace lookup hints table are twolevel_hint
1085 * structs.  These provide hints to the dynamic link editor where to start
1086 * looking for an undefined symbol in a two-level namespace image.  The
1087 * isub_image field is an index into the sub-images (sub-frameworks and
1088 * sub-umbrellas list) that made up the two-level image that the undefined
1089 * symbol was found in when it was built by the static link editor.  If
1090 * isub-image is 0 the the symbol is expected to be defined in library and not
1091 * in the sub-images.  If isub-image is non-zero it is an index into the array
1092 * of sub-images for the umbrella with the first index in the sub-images being
1093 * 1. The array of sub-images is the ordered list of sub-images of the umbrella
1094 * that would be searched for a symbol that has the umbrella recorded as its
1095 * primary library.  The table of contents index is an index into the
1096 * library's table of contents.  This is used as the starting point of the
1097 * binary search or a directed linear search.
1098 */
1099struct twolevel_hint {
1100    uint32_t 
1101        isub_image:8,   /* index into the sub images */
1102        itoc:24;        /* index into the table of contents */
1103};
1104
1105/*
1106 * The prebind_cksum_command contains the value of the original check sum for
1107 * prebound files or zero.  When a prebound file is first created or modified
1108 * for other than updating its prebinding information the value of the check sum
1109 * is set to zero.  When the file has it prebinding re-done and if the value of
1110 * the check sum is zero the original check sum is calculated and stored in
1111 * cksum field of this load command in the output file.  If when the prebinding
1112 * is re-done and the cksum field is non-zero it is left unchanged from the
1113 * input file.
1114 */
1115struct prebind_cksum_command {
1116    uint32_t cmd;       /* LC_PREBIND_CKSUM */
1117    uint32_t cmdsize;   /* sizeof(struct prebind_cksum_command) */
1118    uint32_t cksum;     /* the check sum or zero */
1119};
1120
1121/*
1122 * The uuid load command contains a single 128-bit unique random number that
1123 * identifies an object produced by the static link editor.
1124 */
1125struct uuid_command {
1126    uint32_t    cmd;            /* LC_UUID */
1127    uint32_t    cmdsize;        /* sizeof(struct uuid_command) */
1128    uint8_t     uuid[16];       /* the 128-bit uuid */
1129};
1130
1131/*
1132 * The rpath_command contains a path which at runtime should be added to
1133 * the current run path used to find @rpath prefixed dylibs.
1134 */
1135struct rpath_command {
1136    uint32_t     cmd;           /* LC_RPATH */
1137    uint32_t     cmdsize;       /* includes string */
1138    union lc_str path;          /* path to add to run path */
1139};
1140
1141/*
1142 * The linkedit_data_command contains the offsets and sizes of a blob
1143 * of data in the __LINKEDIT segment. 
1144 */
1145struct linkedit_data_command {
1146    uint32_t    cmd;            /* LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO,
1147                                   or LC_FUNCTION_STARTS */
1148    uint32_t    cmdsize;        /* sizeof(struct linkedit_data_command) */
1149    uint32_t    dataoff;        /* file offset of data in __LINKEDIT segment */
1150    uint32_t    datasize;       /* file size of data in __LINKEDIT segment  */
1151};
1152
1153/*
1154 * The encryption_info_command contains the file offset and size of an
1155 * of an encrypted segment.
1156 */
1157struct encryption_info_command {
1158   uint32_t     cmd;            /* LC_ENCRYPTION_INFO */
1159   uint32_t     cmdsize;        /* sizeof(struct encryption_info_command) */
1160   uint32_t     cryptoff;       /* file offset of encrypted range */
1161   uint32_t     cryptsize;      /* file size of encrypted range */
1162   uint32_t     cryptid;        /* which enryption system,
1163                                   0 means not-encrypted yet */
1164};
1165
1166/*
1167 * The version_min_command contains the min OS version on which this
1168 * binary was built to run.
1169 */
1170struct version_min_command {
1171    uint32_t    cmd;            /* LC_VERSION_MIN_MACOSX or
1172                                   LC_VERSION_MIN_IPHONEOS  */
1173    uint32_t    cmdsize;        /* sizeof(struct min_version_command) */
1174    uint32_t    version;        /* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1175    uint32_t    reserved;       /* zero */
1176};
1177
1178/*
1179 * The dyld_info_command contains the file offsets and sizes of
1180 * the new compressed form of the information dyld needs to
1181 * load the image.  This information is used by dyld on Mac OS X
1182 * 10.6 and later.  All information pointed to by this command
1183 * is encoded using byte streams, so no endian swapping is needed
1184 * to interpret it.
1185 */
1186struct dyld_info_command {
1187   uint32_t   cmd;              /* LC_DYLD_INFO or LC_DYLD_INFO_ONLY */
1188   uint32_t   cmdsize;          /* sizeof(struct dyld_info_command) */
1189
1190    /*
1191     * Dyld rebases an image whenever dyld loads it at an address different
1192     * from its preferred address.  The rebase information is a stream
1193     * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_.
1194     * Conceptually the rebase information is a table of tuples:
1195     *    <seg-index, seg-offset, type>
1196     * The opcodes are a compressed way to encode the table by only
1197     * encoding when a column changes.  In addition simple patterns
1198     * like "every n'th offset for m times" can be encoded in a few
1199     * bytes.
1200     */
1201    uint32_t   rebase_off;      /* file offset to rebase info  */
1202    uint32_t   rebase_size;     /* size of rebase info   */
1203   
1204    /*
1205     * Dyld binds an image during the loading process, if the image
1206     * requires any pointers to be initialized to symbols in other images. 
1207     * The bind information is a stream of byte sized
1208     * opcodes whose symbolic names start with BIND_OPCODE_.
1209     * Conceptually the bind information is a table of tuples:
1210     *    <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend>
1211     * The opcodes are a compressed way to encode the table by only
1212     * encoding when a column changes.  In addition simple patterns
1213     * like for runs of pointers initialzed to the same value can be
1214     * encoded in a few bytes.
1215     */
1216    uint32_t   bind_off;        /* file offset to binding info   */
1217    uint32_t   bind_size;       /* size of binding info  */
1218       
1219    /*
1220     * Some C++ programs require dyld to unique symbols so that all
1221     * images in the process use the same copy of some code/data.
1222     * This step is done after binding. The content of the weak_bind
1223     * info is an opcode stream like the bind_info.  But it is sorted
1224     * alphabetically by symbol name.  This enable dyld to walk
1225     * all images with weak binding information in order and look
1226     * for collisions.  If there are no collisions, dyld does
1227     * no updating.  That means that some fixups are also encoded
1228     * in the bind_info.  For instance, all calls to "operator new"
1229     * are first bound to libstdc++.dylib using the information
1230     * in bind_info.  Then if some image overrides operator new
1231     * that is detected when the weak_bind information is processed
1232     * and the call to operator new is then rebound.
1233     */
1234    uint32_t   weak_bind_off;   /* file offset to weak binding info   */
1235    uint32_t   weak_bind_size;  /* size of weak binding info  */
1236   
1237    /*
1238     * Some uses of external symbols do not need to be bound immediately.
1239     * Instead they can be lazily bound on first use.  The lazy_bind
1240     * are contains a stream of BIND opcodes to bind all lazy symbols.
1241     * Normal use is that dyld ignores the lazy_bind section when
1242     * loading an image.  Instead the static linker arranged for the
1243     * lazy pointer to initially point to a helper function which
1244     * pushes the offset into the lazy_bind area for the symbol
1245     * needing to be bound, then jumps to dyld which simply adds
1246     * the offset to lazy_bind_off to get the information on what
1247     * to bind. 
1248     */
1249    uint32_t   lazy_bind_off;   /* file offset to lazy binding info */
1250    uint32_t   lazy_bind_size;  /* size of lazy binding infs */
1251   
1252    /*
1253     * The symbols exported by a dylib are encoded in a trie.  This
1254     * is a compact representation that factors out common prefixes.
1255     * It also reduces LINKEDIT pages in RAM because it encodes all 
1256     * information (name, address, flags) in one small, contiguous range.
1257     * The export area is a stream of nodes.  The first node sequentially
1258     * is the start node for the trie. 
1259     *
1260     * Nodes for a symbol start with a uleb128 that is the length of
1261     * the exported symbol information for the string so far.
1262     * If there is no exported symbol, the node starts with a zero byte.
1263     * If there is exported info, it follows the length.  First is
1264     * a uleb128 containing flags.  Normally, it is followed by a
1265     * uleb128 encoded offset which is location of the content named
1266     * by the symbol from the mach_header for the image.  If the flags
1267     * is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
1268     * a uleb128 encoded library ordinal, then a zero terminated
1269     * UTF8 string.  If the string is zero length, then the symbol
1270     * is re-export from the specified dylib with the same name.
1271     *
1272     * After the optional exported symbol information is a byte of
1273     * how many edges (0-255) that this node has leaving it,
1274     * followed by each edge.
1275     * Each edge is a zero terminated UTF8 of the addition chars
1276     * in the symbol, followed by a uleb128 offset for the node that
1277     * edge points to.
1278     * 
1279     */
1280    uint32_t   export_off;      /* file offset to lazy binding info */
1281    uint32_t   export_size;     /* size of lazy binding infs */
1282};
1283
1284/*
1285 * The following are used to encode rebasing information
1286 */
1287#define REBASE_TYPE_POINTER                                     1
1288#define REBASE_TYPE_TEXT_ABSOLUTE32                             2
1289#define REBASE_TYPE_TEXT_PCREL32                                3
1290
1291#define REBASE_OPCODE_MASK                                      0xF0
1292#define REBASE_IMMEDIATE_MASK                                   0x0F
1293#define REBASE_OPCODE_DONE                                      0x00
1294#define REBASE_OPCODE_SET_TYPE_IMM                              0x10
1295#define REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB               0x20
1296#define REBASE_OPCODE_ADD_ADDR_ULEB                             0x30
1297#define REBASE_OPCODE_ADD_ADDR_IMM_SCALED                       0x40
1298#define REBASE_OPCODE_DO_REBASE_IMM_TIMES                       0x50
1299#define REBASE_OPCODE_DO_REBASE_ULEB_TIMES                      0x60
1300#define REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB                   0x70
1301#define REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB        0x80
1302
1303
1304/*
1305 * The following are used to encode binding information
1306 */
1307#define BIND_TYPE_POINTER                                       1
1308#define BIND_TYPE_TEXT_ABSOLUTE32                               2
1309#define BIND_TYPE_TEXT_PCREL32                                  3
1310
1311#define BIND_SPECIAL_DYLIB_SELF                                  0
1312#define BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE                      -1
1313#define BIND_SPECIAL_DYLIB_FLAT_LOOKUP                          -2
1314
1315#define BIND_SYMBOL_FLAGS_WEAK_IMPORT                           0x1
1316#define BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION                   0x8
1317
1318#define BIND_OPCODE_MASK                                        0xF0
1319#define BIND_IMMEDIATE_MASK                                     0x0F
1320#define BIND_OPCODE_DONE                                        0x00
1321#define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM                       0x10
1322#define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB                      0x20
1323#define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM                       0x30
1324#define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM               0x40
1325#define BIND_OPCODE_SET_TYPE_IMM                                0x50
1326#define BIND_OPCODE_SET_ADDEND_SLEB                             0x60
1327#define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB                 0x70
1328#define BIND_OPCODE_ADD_ADDR_ULEB                               0x80
1329#define BIND_OPCODE_DO_BIND                                     0x90
1330#define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB                       0xA0
1331#define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED                 0xB0
1332#define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB            0xC0
1333
1334
1335/*
1336 * The following are used on the flags byte of a terminal node
1337 * in the export information.
1338 */
1339#define EXPORT_SYMBOL_FLAGS_KIND_MASK                           0x03
1340#define EXPORT_SYMBOL_FLAGS_KIND_REGULAR                        0x00
1341#define EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL                   0x01
1342#define EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION                     0x04
1343#define EXPORT_SYMBOL_FLAGS_REEXPORT                            0x08
1344#define EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER                   0x10
1345
1346/*
1347 * The symseg_command contains the offset and size of the GNU style
1348 * symbol table information as described in the header file <symseg.h>.
1349 * The symbol roots of the symbol segments must also be aligned properly
1350 * in the file.  So the requirement of keeping the offsets aligned to a
1351 * multiple of a 4 bytes translates to the length field of the symbol
1352 * roots also being a multiple of a long.  Also the padding must again be
1353 * zeroed. (THIS IS OBSOLETE and no longer supported).
1354 */
1355struct symseg_command {
1356        uint32_t        cmd;            /* LC_SYMSEG */
1357        uint32_t        cmdsize;        /* sizeof(struct symseg_command) */
1358        uint32_t        offset;         /* symbol segment offset */
1359        uint32_t        size;           /* symbol segment size in bytes */
1360};
1361
1362/*
1363 * The ident_command contains a free format string table following the
1364 * ident_command structure.  The strings are null terminated and the size of
1365 * the command is padded out with zero bytes to a multiple of 4 bytes/
1366 * (THIS IS OBSOLETE and no longer supported).
1367 */
1368struct ident_command {
1369        uint32_t cmd;           /* LC_IDENT */
1370        uint32_t cmdsize;       /* strings that follow this command */
1371};
1372
1373/*
1374 * The fvmfile_command contains a reference to a file to be loaded at the
1375 * specified virtual address.  (Presently, this command is reserved for
1376 * internal use.  The kernel ignores this command when loading a program into
1377 * memory).
1378 */
1379struct fvmfile_command {
1380        uint32_t cmd;                   /* LC_FVMFILE */
1381        uint32_t cmdsize;               /* includes pathname string */
1382        union lc_str    name;           /* files pathname */
1383        uint32_t        header_addr;    /* files virtual address */
1384};
1385
1386/*
1387 * Sections of type S_THREAD_LOCAL_VARIABLES contain an array
1388 * of tlv_descriptor structures.
1389 */
1390struct tlv_descriptor
1391{
1392        void*           (*thunk)(struct tlv_descriptor*);
1393        unsigned long   key;
1394        unsigned long   offset;
1395};
1396
1397#endif /* _MACHO_LOADER_H_ */